Кабинет
Владимир Успенский

Апология математики, или О математике как части духовной культуры

Успенский Владимир Андреевич — доктор физико-математических наук, профессор, заведующий кафедрой математической логики и теории алгоритмов механико-математического факультета МГУ им. М. В. Ломоносова. Родился в 1930 году. Автор филологических и культурологических статей, опубликованных в журналах “Новое литературное обозрение”, “Неприкосновенный запас” и других изданиях. Постоянный автор “Нового мира”.


Владимир Успенский

Апология математики, или О математике как части духовной культуры


Мира восторг беспредельный
Сердцу певучему дан.
А. Блок, “Роза и Крест”.

 

Наука умеет много гитик.
Ключ к карточному фокусу.

Глава 1. Ватсон против Холмса

"Человек отличается от свиньи, в частности, тем, что ему иногда хочется поднять голову и посмотреть на звёзды”. Это изречение принадлежит Виктору Амбарцумяну (в 1961 — 1964 гг. президенту Международного астрономического союза). А почти за двести лет до того на ту же тему высказался Иммануил Кант. Кант поставил звёздное небо, по силе производимого впечатления, на один уровень с пребывающим внутри человека, и прежде всего внутри самого Канта, нравственным законом. Эти высказывания объявляют усеянное звёздами небо частью общечеловеческой духовной культуры и, более того, такой её частью, которая для всякого человека должна быть обязательной. Трудно представить человека, не впечатлявшегося видами неба. (Впрочем, воспоминания переносят меня в осень 1947 года, на лекцию по астрономии для студентов первого курса механико-математического факультета МГУ. Лекцию читает профессор Куликов. Он делает нам назидание. “В прошлом веке профессор Киевского университета Митрофан Хандриков, — говорит профессор Куликов, — на экзамене спросил студента, каков видимый размер Луны во время полнолуния, и получил ответ, что тот не может этого знать, поскольку никогда не видал Луны”.)

Хотя приведённые выше высказывания о роли звёздного неба в духовной культуре человека и не содержат прямого заявления о включении в эту культуру сведений об устройстве небесного свода, косвенно такое включение происходит. Неотъемлемой частью цивилизации является то или иное представление об указанном устройстве — хотя бы признаваемое в наши дни совершенно фантастическим, как, например, такое: “А Земля — это только лишь плесень в перевёрнутой неба корзине; звёзды — это свет другого мира, к нам просвечивающий сквозь дно корзины, сквозь бесчисленные маленькие дыры, не затёртые небесной глиной”. Человек, вовсе не имеющий представлений об устройстве мироздания, признаётся окружающими выпадающим из культуры. Вспомним изумление доктора Ватсона, обнаружившего вскоре после вселения в знаменитый дом 221b по Бейкер-стрит, что Холмс не знал, что Земля вертится вокруг Солнца. И даже считал знать это совершенно излишним. “Ну хорошо, пусть, как вы говорите, мы вращаемся вокруг Солнца, — возражал Холмс. — А если бы я узнал, что мы вращаемся вокруг Луны, много бы это помогло мне или моей работе?” Вот здесь очень важный момент. Холмс признаёт нужным знать только то, что может быть использовано в практических целях. Ватсон считает — и, очевидно, исходит из того, что читатели его записок разделяют эту его точку зрения, — что некоторые знания являются обязательными независимо от их практического применения. При всём уважении к великому сыщику, согласимся с доктором.

Итак, есть определённый объём непрактических знаний, обязательный для всякого культурного человека (несмотря на известное дурновкусие выражения “культурный человек”, в целях ясности изложения приходится его употреблять). Мы полагаем, что в этот объём входят и некоторые из тех математических представлений, которые не связаны с утилитарным использованием математики. Указанные представления состоят не только из фактов, но и из понятий и методов оперирования с этими понятиями.

Роль математики в современной материальной культуре, а также роль её элементарных разделов в повседневном быту достаточно известны, и об этом можно позволить себе не говорить. В этом очерке мы собираемся говорить о математике как о части культуры духовной.

Математические идеи могут вызывать эмоции, сравнимые с эмоциями, возникающими при чтении литературных произведений, слушании музыки, созерцании архитектуры. К сожалению, закостеневшие способы преподавания математики редко позволяют ощутить её эстетическую сторону, доступную, хотя бы частично, отнюдь не только математикам. Математиками же эта сторона ощущается с полной ясностью. Вот что писал выдающийся математик, учитель великого Колмогорова, Николай Николаевич Лузин (1883 — 1950): “Математики изумляются гармонии чисел и геометрических форм. Они приходят в трепет, когда новое открытие открывает им неожиданные перспективы. И та радость, которую они переживают, разве это не есть радость эстетического порядка, хотя обычные чувства зрения и слуха здесь не участвуют. <...> Математик изучает свою науку вовсе не потому, что она полезна. Он изучает её потому, что она прекрасна. <...> Я говорю о красоте более глубокой, [чем та, которая поражает наши чувства,] проистекающей из гармонии и согласованности воедино всех частей, которую один лишь чистый интеллект и сможет оценить. Именно эта гармония и даёт основу тем красочным видимостям, в которых купаются наши чувства. <...> Нужно ли ещё прибавлять, что в развитии этого чувства интеллектуальной красоты лежит залог всякого прогресса?”

Являясь (через Колмогорова) научным внуком Лузина, автор настоящего очерка с сочувствием относится к формуле “математика для математики”, образованной по аналогии с известным слоганом “искусство для искусства”. Однако всё не так просто. Следует огорчить любителей чистого разума и утешить сторонников практической пользы. Опыт развития математики убеждает, что самые, казалось бы, оторванные от практики её разделы рано или поздно находят важные применения. Всю первую половину XX века математическая логика рассматривалась как наука, занятая исключительно проблемами логического обоснования математики, как своего рода философский анклав в математике; в СССР она находилась под подозрением со стороны борцов со всевозможными “измами”, и первая кафедра математической логики была открыта лишь в 1959 году. Сегодня математическая логика переплетена с теоретической информатикой (Theoretical Computer Science) и служит для последней фундаментом. Теория чисел, одна из древнейших математических теорий, долгое время считалась чем-то вроде игры в бисер. Оказалось, что без этой теории немыслима современная криптография, как и другие важные направления, объединённые названием “защита информации”. Специалисты по теоретической физике интересуются новейшими разработками алгебраической геометрии и даже такой абстрактной области, как теория категорий.

Применение математики в физике не ограничивается числовыми формулами и уравнениями. Её, математики, абстрактные конструкции позволяют лучше понять природу тех физических явлений, изучение которых находится на передовом крае науки. Поясним сказанное с помощью исторической аналогии. Когда-то считали, что Земля плоская. Ничего другого в то время просто не могло прийти в голову. Затем пришли к мысли о её шарообразности. Вряд ли сама эта мысль была бы возможна, не обладай человеческое сознание уже готовым представлением о шаре. Точно так же долгое время считалось очевидным, что окружающее нас физическое пространство есть самое обычное трёхмерное евклидово пространство из школьного курса геометрии. В этом были уверены все, включая тех, кто не знал учёной терминологии и потому не пользовался термином “евклидово пространство” (вспомним мольеровского Журдена, не знавшего, что говорит прозой). И действительно, а как же может быть иначе? Первые сомнения возникли в XIX веке независимо в Германии у Гаусса и в России у Лобачевского. Они первыми осознали не только существование неевклидовой геометрии как математического объекта, но и возможность неевклидового строения нашего мира (мы коснёмся этой темы в главе 8). Лобачевского тогда никто не понял, кроме Гаусса, сам же Гаусс, предчувствуя непонимание, ни с кем не делился своим прозрением. Теория относительности подтвердила указанную неевклидовость, предсказав прогибание пространства под воздействием массивных тел, что, в свою очередь, было подтверждено наблюдаемым искривлением луча света вблизи таких тел. Некоторые свойства пространства и времени оказались парадоксальными, другие остаются неизвестными. Вместе с тем познание этих свойств может оказаться жизненно важным для человечества. Математика предлагает уже готовые модели, позволяющие лучше понять эти свойства, в особенности же свойства парадоксальные, противоречащие повседневному опыту. Более точно, в математике построены такие структуры, которые обладают требуемыми свойствами.

Здесь мы прикоснулись к важной философской, а именно гносеологической, теме. Только что упомянутое представление о шаре, столь необходимое для осознания фигуры Земли, находило поддержку в повседневном опыте — а именно в наблюдении шарообразных предметов, как природных (яблок, тыкв, ягод, катимых скарабеями навозных шариков и т. п.), так и искусственных (например, пушечных ядер). И когда потребовалось узнать фигуру Земли, оставалось лишь воспользоваться названным представлением. Иначе обстоит дело с попытками познания строения Вселенной. Повседневный опыт не даёт требуемых геометрических форм. Оказалось, однако, что хотя такими формами и не обладают предметы, доступные непосредственному созерцанию, эти формы представлены в уже обнаруженных структурах математики. Поскольку эти математические структуры точно описаны, нетрудно, при желании, понять, как в них реализуются свойства мироздания — даже те, которые кажутся парадоксальными. А тогда остаётся допустить, что геометрия реального мира хотя бы отчасти выглядит так, как геометрия этих структур. Таким образом, математика, не давая ответ на вопрос, как оно есть в реальном мире, помогает понять, как оно может быть — что не менее важно: ведь как оно есть мы вряд ли когда-нибудь узнаем до конца. (В главе 9 мы вернёмся к этой теме.) И эту помощь, которую оказывает математика в познании мира, также следует вписать в перечень её приложений.

Как говорил один из самых крупных математиков XX века Джон фон Нёйман (1903 — 1957): “В конечном счёте, современная математика находит применение. А ведь заранее не ясно, что так должно быть”.

Нередко утверждают, что математику следует рассматривать как часть физики, поскольку она описывает внешний физический мир. Но с тем же успехом её можно считать частью психологии, поскольку изучаемые в ней абстракции суть явления нашего мышления и тем самым должны проходить по ведомству психологии. Взять, например, такое основное (и, может быть, самое главное) понятие математики, как понятие натурального числа, то есть числа, являющегося одновременно и целым, и положительным (иногда к натуральным числам причисляют ещё и число ноль, к чему есть серьёзные основания!). Ведь показать, скажем, число пять невозможно, можно только предъявить пять пальцев или пять иных предметов. Уже здесь не такая уж малая степень абстракции. Ещё более высокая степень абстракции в числе пять септиллионов: ясно, что предъявить столько предметов невозможно. И уж совсем высокая (и одновременно глубокая) абстракция заключена в понятии натурального числа вообще и натурального ряда как совокупности всех натуральных чисел. Здесь поле, только начатое распахиваться психологией. Упоминавшийся уже Лузин, который был не только математиком, но и философом (и даже его избрание в 1929 году в Академию наук СССР произошло “по кафедре философии”), так высказывался на эту тему: “По-видимому, натуральный ряд чисел не представляет из себя абсолютно объективного образования. По-видимому, он представляет собой функцию головы того математика, который в данном случае говорит о натуральном ряде”.

Тем не менее два математика на разных континентах приходят к одним и тем же выводам о свойствах натурального ряда чисел, хотя никто из них не может наблюдать числа внешним зрением, а лишь зрением внутренним — внутри собственной мысли. В этом труднообъяснимом единстве взглядов на идеальные сущности некоторые усматривают доказательство существования Бога.

Итак, мы отстаиваем два тезиса. Первый, что математика — вне зависимости от её практического использования — принадлежит духовной культуре. Второй, что отдельные фрагменты математики входят в общеобязательную часть этой культуры.

Что же касается вопроса, чтбо именно из математики, причем из математики неприкладной, должно входить в общеобязательный культурный минимум, то однозначный ответ на этот вопрос вряд ли уместен. Каждый должен определять этот минимум для себя. Задача общества — предоставить своему члену ту информацию о математических понятиях, идеях и методах, откуда этот субъективный минимум можно было бы выбирать. Вообще, знание есть дело добровольное, и насилие тут неуместно. На ум приходит замечательное высказывание, принадлежащее Сухарто (второму президенту Индонезии — не путать с первым её президентом, Сукарно): “В наше время чрезвычайно трудно заставить кого-либо сделать что-либо добровольно”. Иногда, тем не менее, в дальнейшем изложении будут встречаться рекомендации о включении в математический минимум тех или иных знаний; эти рекомендации не предлагаются как нечто категорическое и даются лишь в качестве возможных примеров и материала для дальнейшего обсуждения. Школьная программа по математике — слишком болезненная тема, чтобы её здесь затрагивать (хотя эта тема не может не волновать, поскольку касается миллионов наших детей). Ограничусь мнением, что хорошо бы в этой программе устранить перекос в вычислительную сторону математики и уделить больше внимания стороне качественной, не связанной непосредственно с вычислениями.

Замечу в заключение, что математика входит в мировую культуру и своим этическим аспектом. Наличие такового у математики может показаться странным. Он, однако, есть. Математика не допускает лжи. Она требует, чтобы утверждения не просто провозглашались, но и доказывались. Она учит задавать вопросы и не бояться непонимания ответов. Она по природе демократична: её демократизм обусловлен характером математических истин. Их непреложность не зависит от того, кто их провозглашает, академик или школьник. Приведу такой пример. Некий третьекурсник механико-математического факультета МГУ осмелился опровергнуть одно из утверждений лектора, лектором же был не кто иной, как сам Колмогоров. После чего третьекурсник был немедленно приглашён Колмогоровым посетить его дачу, где и был произведён в ученики.

Данный текст писался не для математиков, а скорее для гуманитариев. Поэтому при его составлении в ряде случаев приходилось выбирать между понятностью и точностью. Предпочтение отдавалось понятности. (Достигнуть абсолютной точности всё равно невозможно. Невозможно, впрочем, достигнуть и абсолютной понятности — как и вообще чего-либо абсолютного.) За неточность прошу прощения у математиков, а всякому, любезно указавшему на непонятное место, приношу искреннюю благодарность.

 

Глава 2. Теорема Пифагора и теорема Ферма

В кажущемся противоречии с настойчивым подчёркиванием, что в данном очерке нас интересует именно непрактический, неприкладной аспект математики, мы предполагаем весьма и весьма поучительным включение в «джентльменский набор» математических представлений знание того, почему треугольник со сторонами 3, 4, 5 назывется египетским. А всё дело в том, что древнеегипетские строители пирамид нуждались в способе построения прямого угла. Вот требуемый способ. Верёвка разбивается на 12 равных частей, границы между соседними частями помечаются, а концы веревки соединяются. Затем верёвка натягивается тремя людьми так, чтобы она образовала тре­угольник, а расстояния между соседними натягивателями составляли бы, соответственно, 3 части, 4 части и 5 частей. В таком случае треугольник окажется прямоугольным, в коем стороны 3 и 4 будут катетами, а сторона 5 — гипотенузой, так что угол между сторонами 3 и 4 будет прямым. Боюсь, что большинство читателей в ответ на вопрос «Почему треугольник окажется прямоугольным?» сошлётся на теорему Пифагора: ведь три в квадрате плюс четыре в квадрате равно пяти в квадрате. Однако теорема Пифагора утверждает, что если треугольник прямоугольный, то в этом случае сумма квадратов двух его сторон равна квадрату третьей. Здесь же используется теорема, обратная к теореме Пифагора: если сумма квадратов двух сторон треугольника равна квадрату третьей, то в этом случае треугольник прямоугольный. (Не уверен, что эта обратная теорема занимает должное место в школьной программе.)

Кажущееся противоречие, упомянутое в начале абзаца, заключается в том, что, обещав говорить о неутилитарном аспекте математики, мы сразу же перешли к её практическому применению. Оно потому названо кажущимся, что описанное применение обратной теоремы Пифагора принадлежит далёкому прошлому. Сейчас едва ли кто-либо строит прямой угол указанным способом: этот способ переместился из мира практики в мир идей — как и вообще многие воспоминания о материальной культуре прошлого вошли в духовную культуру настоящего.

Изложенная только что тема содержит в себе три подтемы: прямой угол, треугольник и равенство 3+ 4= 5[2]. В каждой из этих подтем можно усмотреть некие элементы, относящиеся к тому, чтбо автор этих строк понимает под общечеловеческой культурой. Приведём примеры таких элементов.

Сперва о понятии прямого угла. Это понятие может быть использовано для интеллектуального обогащения. Поставим такую задачу: объяснить, какой угол называется прямым, но объяснить не на визуальных примерах, а вербально — например, по телефону. Вот решение. Надо попросить собеседника мысленно взять две жерди, соединить их крест-накрест и заметить, что в точке соединения сходятся четыре угла; если все эти углы окажутся равными друг другу, то каждый из них и называют прямым. Какая же тут духовная культура, если речь идёт о жердях! — возмутится критически настроенный читатель. Но суть здесь, конечно же, не в жердях, а в опыте вербального определения одних понятий через другие. Такой опыт поучителен и полезен, а возможно, что и необходим. Математика вообще представляет собою удобный полигон для оттачивания искусства объяснения. Адресата объяснений следует при этом представлять себе тем внимающим афинскому софисту любопытным скифом, о котором писал Пушкин в послании «К вельможе». Объяснение признаётся успешным, если есть ощущение, что любопытный скиф его поймёт.

Теперь — пример из жизни треугольников. Речь пойдёт о триангуляции. Триангуляция — это сеть примыкающих друг к другу, наподобие паркетин, треугольников различной формы; при этом существенно, что примыкание происходит целыми сторонами, так что вершина одного треугольника не может лежать внутри стороны другого. Триангуляции сыграли важнейшую роль в определении расстояний на земной поверхности, а тем самым и в определении фигуры Земли.

Потребность в измерении больших, в сотни километров, расстояний — как по суше, так и по морю — появилась ещё в древние времена. Капитаны судов, как известно из детских книг, меряют расстояния числом выкуренных трубок. Близок к этому метод, применявшийся во II веке до н. э. знаменитым древнегреческим философом, математиком и астрономом Посидонием, учителем Цицерона: морские расстояния Посидоний измерял длительностью плавания (с учётом, разумеется, скорости судна). Но ещё раньше, в III веке до н. э., другой знаменитый древний грек, заведующий Александрийской библиотекой математик и астроном Эратосфен, измерял сухопутные расстояния по скорости и времени движения торговых караванов. Можно предполагать, что именно так Эратосфен измерил расстояние между Александрией и Сиеной, которая сейчас называется Асуаном (если смотреть по современной карте, получается примерно 850 км). Это расстояние было для него чрезвычайно важным. Дело в том, что Эратосфен считал эти два египетских города лежащими на одном и том же меридиане; хотя это в действительности не совсем так, но близко к истине. Найденное расстояние он принял за длину дуги меридиана. Соединив эту длину с наблюдением полуденных высот Солн­ца над горизонтом в Александрии и Сиене, он, далее, путём изящных геометрических рассуждений, вычислил длину всего меридиана, а тем самым и величину радиуса земного шара.

Ещё в XVI веке расстояние (примерно стокилометровое) между Парижем и Амьеном определялось при помощи счёта оборотов колеса экипажа. Очевидна приблизительность результатов подобных измерений. Но уже в следующем столетии голландский математик, оптик и астроном Снеллиус изобрёл излагаемый ниже метод триангуляции и с его помощью в течение 1615 — 1617 годов измерил дугу меридиана, имеющую угловой размер в один градус и одиннадцать с половиной минут.

Посмотрим, как триангуляция позволяет определять расстояния. Сперва триангулируется полоса земной поверхности, включающая в себя оба пункта, расстояние между которыми хотят найти. Затем выбирается один из тре­угольников триангуляции; будем называть его начальным. Далее выбирается одна из сторон начального треугольника. Она объявляется базой, и ее длина тщательно измеряется. В вершинах начального треугольника строятся вышки — с таким расчётом, чтобы каждая была видна из других вышек. Поднявшись на вышку, расположенную в одной из вершин базы, измеряют угол, под которым видны две другие вышки. После этого поднимаются на вышку, расположенную в другой вершине базы, и делают то же самое. Так, в результате непосредственного измерения, возникают сведения о длине одной из сторон начального треугольника (а именно о длине базы) и о величине прилегающих к ней углов. По формулам тригонометрии вычисляются длины двух других сторон этого треугольника. Каждую из них можно принять за новую базу, причём измерять её длину уже не требуется. Применяя ту же процедуру, можно теперь узнать величины сторон и углов любого из тре­угольников, примыкающих к начальному. И так далее. Важно осознать, что непосредственное измерение какого-либо расстояния проводится только один раз, а дальше уже измеряются только углы между направлениями на вышки, что несравненно легче и может быть сделано с высокой точностью. По завершении процесса оказываются установленными величины всех участвующих в триангуляции отрезков и углов. А это, в свою очередь, позволяет находить любые расстояния в пределах участка поверхности, покрытого триангуляцией. Именно так в XIX веке была найдена длина дуги меридиана от Северного Ледовитого океана до Дуная. Триангуляция содержала 258 тре­угольников, длина дуги оказалась равной 2800 км. Чтобы подавить неточ­ности, при измерениях неизбежные, а при вычислениях возможные, десять баз были подвергнуты непосредственному измерению на местности.

Формулы тригонометрии, упомянутые выше, входят в школьную программу. Подавляющему большинству после школы они никогда не понадобятся, разве что на вступительных экзаменах, и их можно спокойно забыть. Знать — и не только знать, но и осознавать, понимать надо следующее (и именно это входит в обязательный, на наш взгляд, интеллектуальный багаж): треугольник однозначно определяется заданием любой его стороны и прилегающими к ней углами, и этот очевидный факт может быть использован и реально используется для измерения расстояний методом триангуляции. Если всё же кому-нибудь когда-нибудь и понадобятся формулы тригонометрии, их легко можно будет найти в справочниках. Учат ли в наших школах пользоваться справочниками? А ведь это умение несравненно полезнее, чем помнить формулы наизусть.

Наконец, о равенстве 3+ 4= 5[2]. Если положительные числа a, b, c обладают тем свойством, что a[2]b[2]c[2], то, по обратной теореме Пифагора, они представляют собою длины сторон некоторого прямоугольного треугольника; если они к тому же суть числа целые, их называют пифагоровыми. Вот ещё пример пифагоровой тройки: 5, 12, 13. Возникает естественный вопрос, а что будет, если в соотношении, определяющем пифагоровы числа, заменить возведение в квадрат на возведение в куб, в четвёртую, пятую и так далее степень? Можно ли привести пример таких целых положительных чисел a, b, c, чтобы выполнялось равенство a[3]b[3]c[3], или равенство a[4]b[4]c[4], илиa[5]b[5]c[5] и т. п.? Любую тройку целых положительных чисел, для которых выполняется одно из указанных равенств, условимся называть тройкой Ферма.

Только что сформулированным вопросом заинтересовался великий французский математик середины XVII века Пьер Ферма (вообще-то он занимался математикой, а заодно и оптикой, как хобби: служебные его обязанности состояли в заведовании отделом петиций тулузского парламента). Поиски требуемых примеров ни к чему не привели, и Ферма пришёл к убеждению, что их не существует. Утверждение о несуществовании троек Ферма принято называть Великой теоремой Ферма. Строго говоря, его следовало бы называть Великой гипотезой Ферма, поскольку автор утверждения не оставил нам его доказательства. Всё, что Ферма оставил потомкам на эту тему, — это две латинские фразы, написанные им около 1637 года на полях изданной в 1621 году в Париже на двух языках, греческом и латинском, «Арифметики» древнегреческого математика Диофанта. Указанное издание обладало широкими полями, и когда у Ферма появлялись те или иные мысли по ходу чтения, он записывал их на этих полях. И вот какие две фразы он, в частности, написал — приводим эти фразы в переводе: «Невозможно для куба быть записанным в виде суммы двух кубов, или для четвёртой степени быть записанной в виде суммы двух четвёртых степеней, или вообще для любого числа, которое есть степень больше двух, быть записанным в виде суммы двух таких же степеней. Я нашёл поистине удивительное доказательство этого предложения, но оно не уместится на полях [hanc marginis exiguitas non caperet;буквально: скудость поля его не вмещает]».

Своих математических открытий Ферма никогда не публиковал, часть их (да и то без доказательств) сообщалась им в частной переписке, а часть стала известной только после его смерти в 1665 году. К числу последних принадлежит и Великая теорема: в 1670 году старший сын Пьера переиздал в Тулузе Диофантову «Арифметику», включив в издание и 48 примечаний, сделанных его отцом на полях. Лишь в 1994 г. Эндрю Уайлз при участии своего ученика Ричарда Тэйлора доказал наконец Великую теорему — и притом доказал с использованием всей мощи современной математики, так что если сам Ферма и владел доказательством (что более чем сомнительно), то заведомо не таким. А до того Великая теорема оставалась Великой гипотезой.

Задача доказать гипотезу Ферма составила содержание Проблемы Ферма. Простота формулировки проблемы, доступной школьнику младших классов, делала её привлекательной для широких кругов любителей. Привлекательность усиливалась давностью постановки и ореолом некоей таинственности, сопутствующей постановке. А тут ещё в 1908 году была объявлена премия в сто тысяч германских марок за решение Проблемы Ферма. Вскоре мировая война обесценила премию, но было уже поздно: слух о премии привлёк к Проблеме Ферма ещё больше «старателей». Возникла особая разновидность людей, называемых ферматистами. Ферматисты — это люди, не имеющие специального математического образования, фанатично убеждённые в том, что они решили Проблему Ферма, и настойчиво ищущие признания. Признания они, естественно, не получили, но, завалив своими рукописями математические кафедры ряда крупных западных университетов, заставили эти кафед­ры занять оборонительную позицию: университеты стали возвращать авторам любые доказательства Великой теоремы Ферма, прилагая при этом стандартное письмо с указанием, что доказательство будет рассмотрено только после получения денежного залога. А известный гётттингенский профессор Эдмунд Ландау (избранный в 1932 году иностранным почётным членом Академии наук СССР) даже изобрёл специальный бланк, который он поручал заполнять своим аспирантам: «Дорогой сэр (мадам)! Мы получили Ваше доказательство Великой теоремы Ферма. Первая ошибка находится на странице ... , строка ...»

Одного из ферматистов мне довелось увидеть в мои студенческие годы. Сейчас я об этом расскажу. (Недоброжелательно настроенный читатель возразит, что рассказ о ферматисте не имеет отношения к заявленной теме — о месте математики в общечеловеческой духовной культуре; на наш взгляд — имеет.) Дело происходит в 1950 году или около того в Москве. Я нахожусь в одной из редакций, расположенных на Большой Калужской улице (сейчас это начало Ленинского проспекта). В редакцию входит другой посетитель и просит разрешения позвонить по телефону; в те годы вход в офисы ещё не охранялся ни охранниками, ни кодовыми замками. Посетитель живописен: худ, длинноволос и держит в руках сетчатую авоську, в которой лежит скрипка. Как мне потом расскажут знающие люди, он зарабатывал на жизнь, играя на этой скрипке на палубе речных теплоходов. На моих глазах, а также ушах, он делает два звонка. Первый звонок: «Это Московский университет? Попросите, пожалуйста, к телефону ректора. Ах, ректор занят и не может подойти? Дело в том, что я посылал на его имя ценное письмо с решением проблемы Ферма и хотел бы узнать результат. Ну хорошо, я позвоню позже». Второй звонок: «Это Академия наук? Попросите, пожалуйста, к телефону президента. Ах, президент занят и не может подойти? Дело в том, что я посылал на его имя ценное письмо с решением проблемы Ферма и хотел бы узнать результат. Ну хорошо, я позвоню позже». Позвонив, он вежливо благодарит и удаляется.

Но отнюдь не все советские ферматисты были столь травоядны. Часто, не найдя поддержки, они писали жалобу в так называемый «директивный орган», то есть в ЦК КПСС. В жалобе указывалось, что имеется возможность показать Западу кузькину мать и в очередной раз продемонстрировать всему миру приоритет советской науки, предъявив решение знаменитой проблемы, а нехорошие люди чинят этому препятствия. К жалобе прилагалась рукопись. А иной раз рукопись и не сопровождалась жалобой, а сразу посылалась в ЦК. В обоих вариантах ЦК переправлял рукопись тому же ректору Московского университета или тому же президенту Академии наук. А далее она, украшенная грозными резолюциями, спускалась вниз, на кафедру или в отдел. Теперь уже отмахнуться было невозможно и приходилось разбираться в заведомо ложном доказательстве, отыскивая в нём ошибку. Когда-то я прикинул, сколько времени профессиональные математики вынуждены тратить на переписку с ферматистами (переписку бесплодную, поскольку истинного ферматиста переубедить невозможно), — прикинул и ужаснулся.

В сравнительно редких случаях ферматисту удавалось опубликовать свой труд. (Это сейчас за счёт автора можно опубликовать что угодно, а в совет­ское время даже ксероксы находились под строжайшим контролем, что уж говорить об издательствах и типографиях.) В частности, это удалось Виктолию Будкину. В 1975 году расположенное в Ярославле Верхне-Волжское книжное издательство выпустило пятитысячным тиражом его брошюру «Методика познания „истины”. Доказательство великой теоремы Ферма». То, что написано на её странице 45, весьма типично для самоосознания ферматиста: «Итак, сменилось 13 поколений людей, а Великая теорема Ферма осталась ещё не доказанной. Только в настоящей работе впервые приводится полное доказательство теоремы в общем виде».

Казалось бы, после того как доказательство теоремы Ферма было не только найдено (в сентябре 1994 г.), но и опубликовано (в 1995 г.) и признано мировой математической общественностью, с ферматизмом как с явлением будет покончено. Не тут-то было — ряды ферматистов хотя и поредели, но не иссякли. Сведения о том, что Великая теорема доказана, дошли не до всех: ведь, повторяю, ферматисты не являются математиками (хотя имеющие техническое образование часто считают себя таковыми). А многие из тех, до кого и дошло, продолжали искать какое-нибудь простое доказательство. В Рос­сии ферматизм дал неожиданную вспышку в августе 2005 года. К «Новой газете» я питал уважение и — до того августа — доверие и не думал, что когда-либо выступлю её оппонентом; но приходится. Номер 61 газеты от 22 августа 2005 года открывался крупным и чуть ли не цветным заголовком «ЧЕЛОВЕЧЕСТВО МОЖЕТ РАССЛАБИТЬСЯ?»; сообщалось, что «омский академик Александр Ильин предложил простое доказательство знаменитой теоремы Ферма». Заместителю главного редактора газеты О. Н. Хлебникову я пытался объяснить накануне, то есть 21 августа, что если доктор технических наук Александр Иванович Ильин и является академиком, то академиком одной из десятков тех академий, кои, как грибы, возникли у нас в постсовет­ское время (одних только академий энергоинформационных наук две: Международная и Сибирская) — но никак не членом Российской академии наук (РАН); попытки мои успеха не имели; Олег Никитович отвечал, что он знает точно: А. И. Ильин — член РАН. Более того, через неделю, в № 63 от 29 августа 2005 года, та же газе­та сообщала, что «академики Новиков и Никитин решение теоремы Ферма уже видели и ошибок в нем не нашли». Надо ли объяснять читателю, что г-да Новиков и Никитин (как, впрочем, и А. И. Ильин) не являлись не только членами РАН, но и математиками? Некоторое время сенсация сверкала на экранах телевизоров и в различных газетах, не говоря уже об Интернете. Потом как-то тихо всё сошло на нет. Ферматизм тоже часть человеческой культуры — но ведь не материальной же, а значит, духовной.

В качестве завершения темы снова вернусь в 1950-е годы. Посетителя офиса на Большой Калужской мне довелось увидеть ещё один раз. Это произошло на третьем этаже дома 9 по Моховой улице, в канцелярии механико-математического факультета Московского университета, где я тогда учился. Всё с той же скрипкой в авоське он вошёл в канцелярию, попросил лист бумаги и, примостившись у стола, стал писать. Не в силах сдержать любопытства, я заглянул ему через плечо. Каллиграфическим почерком выводились буквы: «...бывшего студента <...> Императорского университета прошение...» (какого именно университета — не помню). Затем он попросил указать ему специалиста по теории чисел. В качестве такового ему был назван заведующий кафедрой теории чисел член-корреспондент Гельфонд. В это время по коридору шёл член-корреспондент Гельфанд, к теории чисел отношения не имеющий. Услышав его фамилию, бывший студент Императорского университета бросился к нему навстречу. Всем было известно, что Гельфанд — математик великий, но непредсказуемый и легко может нахамить. Я не стал дожидаться столкновения двух тел и в страхе убежал.

 

Глава 3. Проблемы нерешённые и проблемы нерешимые

Проблема — это всегда требование что-то найти, указать. Это «что-то» может иметь самую различную природу: это может быть ответ на заданный вопрос, законопроект, доказательство теоремы, число (при решении уравнений), последовательность геометрических построений (при решении геометрических задач на построение). Опыт математики позволяет провести точную грань между проблемами нерешёнными и проблемами нерешимыми. Первые ждут своего решения, вторые же решения не имеют и иметь не могут, у них решения просто-напросто не существует.

К числу первых долгое время относилась проблема Ферма. В математике таких проблем много, но абсолютное большинство из них требует для понимания их формулировок специального образования. Нерешённых проблем с простыми формулировками гораздо меньше. Из них наиболее известны, пожалуй, следующие четыре проблемы теории чисел. Теория чисел (в ортодоксальном понимании этого термина) занимается только положительными целыми числами. Поэтому только такие числа разумеются здесь под словом «число».

Две проблемы о совершенных числах. Число 6 делится на 1, на 2, на 3 и на 6 —  эти числа 1, 2, 3, 6 суть делители числа 6. Если из списка делителей числа 6 мы удалим само это число, а остальные сложим, получим 6. Действительно, 1 + 2 + 3 = 6. Тем же свойством обладает число 28. Eго делителями служат числа 1, 2, 4, 7, 14, 28. Если их все, кроме 28, сложить, получим как раз 28: действительно, 1 + 2 + 4 + 7 + 14 = 28. В VI веке до н. э. это редкое свойство чисел вызывало мистический восторг у Пифагора и его учеников: по их мнению, оно свидетельствовало об особом совершенстве числа, обладающего таким свойством. А потому каждое число, совпадающее с суммой своих делителей, отличных от самого этого числа, получило титул совершенного. Первые четыре совершенных числа (6, 28, 496 и 8128) были известны уже во II веке н. э. А в сентябре 2006 года было обнаружено сорок четвёртое совершенное число; оно колоссально, в его десятичной записи около двадцати миллионов знаков. Все найденные совершенные числа оказались чётными. И вот две простые по формулировке, но не решённые до сих пор проблемы. Существуют ли нечётные совершенные числа? Конечна или бесконечна совокупность всех совершенных чисел? Эквивалентная формулировка второй проблемы: существует ли наибольшее совершенное число?

Две проблемы о простых числах. Напомним (мы говорим «напомним», потому что теоретически это должно быть известно из средней школы), что простым называется такое число, которое, во-первых, больше единицы, а во-вторых, не имеет других делителей, кроме единицы и самого себя. Ещё в III веке до н. э. в «Началах» Евклида было установлено, что среди простых чисел нет наибольшего, их ряд 2, 3, 5, 7, 11, 13, 17, 19 и т. д. никогда не кончается; иными словами, совокупность простых чисел бесконечна. Предложение 20 девятой книги «Начал» гласит, что простых чисел больше, чем в любом предъявленном списке таковых; доказательство же этого предложения состоит в описании способа, позволяющего для любого списка простых чисел указать простое число, в этом списке не содержащееся. Отметим, что Евклид нигде не говорит о совокупности простых чисел в целом — само представление о бесконечных совокупностях как об особых сущностях появилось значительно позже. Когда-то изучение простых чисел рассматривалось как чистая игра ума; оказалось, что они играют решающую роль во многих практических задачах криптографии.

Среди нерешённых проблем, связанных с простыми числами, приведём две: проблему Гольдбаха — Эйлера и проблему близнецов.

Первая была поставлена в 1742 году великим Леонардом Эйлером в его переписке с Христианом Гольдбахом. Основная деятельность обоих протекала в России; в 1764 году Гольдбах был похоронен в Москве, а Эйлер в 1783 году — в Петербурге.

Кто есть Эйлер, один из самых великих математиков за всю историю человечества, и в чём заключается его величие — всё это легко узнать, если заглянуть, как встарь, в энциклопедический словарь. Сведения же о том, что собой представляет Гольдбах, словари дают скупо; такие сведения следует искать в специальной литературе или же в Интернете; некоторые из фактов заслуживают того, чтобы здесь их изложить. Хотя математические статьи, опубликованные Гольдбахом в научных журналах, и не оставили сколько-нибудь заметного следа в математике, он был признанным членом математического сообщества своего времени. Он был лично знаком или состоял в переписке с рядом выдающихся умов, в том числе с Лейбницем и с Эйлером; переписка с Эйлером продолжалась 35 лет и прекратилась лишь со смертью Гольдбаха. Один из историков науки (кстати, правнук Эйлера и непременный секретарь Петербургской академии наук) писал: «Его [Гольдбаха] переписка показывает, что если он не прославился ни в одной специальности, то это следует приписать большой универсальности его познаний. То мы видим его обсуждающим <…> кропотливые вопросы классической и восточной филологии; то он пускается в нескончаемые археологические споры <…>». В сво­их письмах Гольдбах предстаёт как человек, наделённый и интуицией, и способностью чувствовать новое. Проблема Гольдбаха — Эйлера, например, возникла как реакция Эйлера на некое предположение, сообщённое ему Гольдбахом (предположение состояло в том, что всякое целое число, большее, чем 2, разлагается в сумму трёх слагаемых, каждое из коих есть либо простое число, либо единица). В России, куда он приехал в 1725 году в тридцатипятилетнем возрасте, Гольдбах сделал головокружительную карьеру. Он сразу получил место секретаря, а также историографа организуемой во исполнение замысла Петра I Императорской академии наук; именно он вёл (на латин­ском языке) первые протоколы Академии. С 1737 по 1740 год он был одним из двух лиц, осуществлявших административное управление Академией (другим был Шумахер; обоим по этому случаю был присвоен ранг коллежского советника). В конце 1727 года он был назначен наставником двенадцатилетнего императора Петра II. Рассказывают, что руководство по обучению царских детей, составленное Гольдбахом в 1760 году, применялось на практике в течение ста последующих лет. В 1742 году Гольдбах сделался ответственным работником министерства иностранных дел (как сказали бы теперь), стал получать награды, земли и чины и к 1760 году дослужился до чина тайного советника. Чин этот довольно точно отражал его обязанности, поскольку Гольдбах состоял в должности криптографа. Эйлеру тоже захотелось чина. Однако Екатерина II, благосклонно встретившая пожелания Эйлера относительно жалованья, казённой квартиры и обеспечения его трёх сыновей позициями и доходами, весьма дипломатично отказала: «Я дала бы, когда он хочет, чин, если бы не опасалась, что этот чин сравняет его с множеством людей, которые не стоят г. Эйлера. Поистине его известность лучше чина для оказания ему должного уважения».

Перейдем, однако, к сути названных проблем.

Непосредственное наблюдение подсказывает, что всякое чётное число, большее двух, удаётся представить в виде суммы двух слагаемых, каждое из которых является простым числом: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = 5 + 7, ..., 24 = 5 + 19, ..., 38 = 7 + 31 и т. д. Однако проверке может быть подвергнуто лишь ограниченное количество чётных чисел, а всего их бесконечно много. Имеющиеся свидетельства, полученные от просмотра конечного (пусть гигантского) количества примеров, не могут гарантировать, что когда-нибудь в будущем не появится астрономически большого чётного числа, для которого разложение на два простых слагаемых невозможно. А ведь современные компьютеры позволяют строить и использовать для важных практических целей числа с сотнями десятичных знаков. Вот и встаёт вопрос: всякое ли чётное число, большее двух, можно представить как сумму двух простых слагаемых? Проблема отыскания ответа на это вопрос и есть проблема Гольдбаха — Эйлера.

Теперь о проблеме близнецов. Заметим, что встречаются очень близко расположенные друг к другу простые числа, а именно такие, расстояние между которыми равно 2. Пример: 41 и 43. Такие числа называются близнецами. Начнём последовательно выписывать пары близнецов: (3, 5); (5, 7); (11, 13); (17, 19); и. т. д. Спрашивается, закончится ли когда-нибудь этот ряд пар? Наступит ли момент, когда будет выписана последняя пара и список близнецов окажется исчерпанным, или же ряд близнецовых пар продолжается не­ограниченно и их совокупность бесконечна (как бесконечна совокупность простых чисел)? Проблема отыскания ответа на этот вопрос и есть проблема близнецов.

Осознание того, что есть простые по формулировке вопросы, столетиями ждущие ответа, представляется поучительным. Не менее поучительно осознание того, что есть и проблемы другого типа, не ждущие решения по причине того, что решения не существует в принципе.

Принято считать, что первой по времени проблемой, относительно которой доказано принципиальное отсутствие решения, была приписываемая школе Пифагора проблема нахождения общей меры двух отрезков. Осторожные выражения «принято считать» и «приписываемая» означают, что как о бесспорных датировках, так и о бесспорном авторстве идей, относящихся к столь глубокой древности, говорить затруднительно. Мы всё же будем придерживаться традиционной версии, к тому же она достаточно правдоподобна.

Пифагор и пифагорейцы, с их мистическим отношением к числам, считали натуральные числа мерилом всех вещей, выразителями мирового порядка и основой материального бытия. Их занимала мысль об универсальной единице измерения длин. То есть о таком едином отрезке, который в каждом другом отрезке укладывался бы целое число раз. Прежде всего они пришли к пониманию, что такого единого отрезка не существует. Это сейчас его отсутствие кажется очевидным, тогда же осознание этого факта было подлинным открытием. Но оставался вопрос, существует ли подобный измеряющий отрезок не для всех отрезков сразу, а свой для каждых двух отрезков. Для ясности сформулируем проблему более развёрнуто. Представим себе два каких-то отрезка. Их общей мерой называется такой отрезок, который в каждом из них укладывается целое число раз. Скажем, если второй из наших двух отрезков составляет треть первого, то этот второй отрезок и будет общей мерой: действительно, в первом отрезке он укладывается три раза, а во втором — один. Отрезок, составляющий одну шестую нашего первого отрезка, будет укладываться в нём шесть раз, а во втором два раза, так что он также будет их общей мерой. Легко предъявить пару отрезков, для которых их общая мера будет укладываться в первом отрезке шесть раз, а во втором — пять; другая общая мера тех же отрезков будет укладываться в первом из них восемнадцать, а в другом пятнадцать раз. Теперь спросим себя, для любых ли двух отрезков существует их общая мера. Ответ неочевиден. В школе Пифагора был получен следующий поразительный результат: если взять какой-либо квадрат, а в нём его сторону и его диагональ, то окажется, что эта сторона и эта диагональ не имеют общей меры! Говорят, что диагональ квадрата и его сторона несоизмеримы. Асоизмеримыми как раз и называются такие два отрезка, которые имеют общую меру.

Сегодня трудно себе представить силу эмоционального потрясения, испытанного, по дошедшим до нас из глубины веков сведениям, пифагорейцами, когда они обнаружили, что бывают несоизмеримые отрезки. Рассказывают, что они принесли в благодарственную жертву богам около сотни быков (и с тех пор, как выразился кто-то, скоты всегда ревут, когда открывается новая истина). Рассказывают также, что пифагорейцы поклялись никому не сообщать о своём открытии. (Современная аналогия: по распространённому мнению, в наши дни велено скрывать от публики свидетельства о летающих тарелках. Я относил это мнение к числу предрассудков — и был неправ: в марте 2007 года было объявлено, что Франция рассекречивает собиравшиеся десятилетиями данные о неопознанных летающих объектах.) По одной из легенд — возможно, придуманной самими пифагорейцами в острастку другим нарушителям, — нашёлся преступивший клятву, и он был убит.

Оценивая открытие несоизмеримых отрезков с современных позиций, по прошествии двух с половиной тысяч лет, можно усмотреть два имеющих общекультурное значение аспекта этого открытия.

Первый общекультурный аспект открытия несоизмеримости заключается в том, что впервые было доказательно установлено отсутствие чего-то — в данном конкретном случае общей меры стороны и диагонали одного и того же квадрата. Произошёл один из самых принципиальных поворотов в интеллектуальном развитии человечества. В самом деле, доказать, что что-то существует, можно, предъявив это «что-то». Например, если бы гипотеза Ферма оказалась неверна, то для её опровержения достаточно было бы предъявить тройку Ферма. Но как доказать, что чего-то нет? Если искомое «что-то» заведомо содержится в известной и ограниченной совокупности, то, вообще говоря, можно перебрать все элементы этой совокупности и убедиться, что ни один из них нам не подходит. Но что делать, если искать наше «что-то» надлежит в совокупности необозримой? А именно эта ситуация и имеет место при поиске общей меры: ведь искать её приходится в необозримой совокупности всех мыслимых отрезков. Остаётся единственный способ: доказывать отсутствие не путём непосредственного наблюдения, а путём логического рассуждения. Такой способ и был применён пифагорейцами.

Сегодня трудно сказать, как именно рассуждали в школе Пифагора, доказывая несоизмеримость стороны квадрата и его диагонали. От старых времён дошло до нас чисто геометрическое, и притом чрезвычайно изящное, доказательство отсутствия общей меры, но является ли оно тем самым первоначальным доказательством — это неизвестно. Сейчас наиболее популярно сведбение вопроса к вопросу из теории чисел. Именно используя прямую и обратную теоремы Пифагора, легко обнаружить, что несоизмеримость стороны и диагонали квадрата равносильна невозможности решить в целых числах уравнение 2x[2]y[2]. (Мы говорим здесь лишь о положительных целых числах; разумеется, нулевые значения икса и игрека дают решение.) Боюсь, что в нашей средней школе эту равносильность не разъясняют, а очень надо бы: на этом примере демонстрируется и соотношение между прямой и обратной теоремами, и то, как одна невозможность перетекает в другую. Доказательство же указанной равносильности происходит очень просто и состоит, как и доказательство любой равносильности, из двух частей. В первой части доказывается, что если бы диагональ и сторона квадрата были соизмеримы, то существовали бы такие целые числа x и y, что 2xy[2]. Во второй части доказывается обратное утверждение: если бы такие числа существовали, то и диагональ оказалась бы соизмерима со стороной. В первой части используется прямая теорема Пифагора: если диагональ и сторона соизмеримы, то их общая мера укладывается в стороне какое-то число x раз, а в диагонали какое-то число y раз; тогда по теореме Пифагора 2xy[2]. Во второй части используется обратная теорема Пифагора: если найдутся такие целые числа x и y, что 2xy[2], то по этой обратной теореме треугольник с длинами сторон xx и y будет прямоугольным и его можно достроить до квадрата со стороной длины x и диагональю длины y. Таким образом, великое пифагорейское открытие было не только замечательным само по себе, но и проложило дорогу к установлению отсутствия решений у уравнений. Обнаружить, что какое-то уравнение не имеет решения (в целых числах, как в нашем примере, или в действительных числах, как уравнение x= -1), подчас бывает не менее важно, чем его решить. Заметим ещё, что доказательство отсутствия целочисленных решений у уравнения 2xy[2] настолько просто, что доступно школьнику младших классов; боюсь, что в школах его не излагают.

Разговор о несуществованиях решений мы продолжим в главах 5 и 6, а пока укажем второй общекультурный аспект открытия явления несоизме­римости. Этот второй аспект заключается в том, что открытие несоизмеримости привело, хотя и очень не сразу, к понятию действительного числа, лежащему в основе не только математики, но и всего современного естествознания и современной техники.

 

Глава 4. Длины и числа

Длина отрезка есть некое соотнесённое с отрезком число. Из теоремы о несоизмеримости немедленно следует, что длина диагонали единичного квадрата, то есть квадрата со стороной длины единица, не может быть выражена ни целым, ни дробным числом. Таким образом, возникает дилемма: или признать, что существуют отрезки, не имеющие длины, или изобрести какие-то новые числа, помимо целых и дробных. Человечество выбрало второе. Ввиду важности сделанного выбора изъяснимся более подробно.

Давайте осознаем, как возникает понятие длины — с логической точки зрения, но отчасти также и с исторической. Прежде всего, вводится единица измерения, то есть отрезок, длиной которого объявляется число единица. Этот отрезок называется единичным отрезком. Если теперь этот единичный отрезок укладывается в каком-то другом отрезке семь или семьдесят семь раз, то этому другому отрезку приписывается длина семь или, соответственно, семьдесят семь. Таким способом приписываются целочисленные длины всем отрезкам, такую длину имеющим. За бортом указанного процесса остаются все те многочисленные отрезки, в которых единичный отрезок не укладывается конечное число раз. Посмотрим, как обстоит дело с ними. Возьмём какой-нибудь из таких отрезков и предположим, что он соизмерим с единичным. Пусть, для примера, их общая мера укладывается в нашем отрезке 18 раз, а в единичном отрезке 12 раз. Тогда в нашем отрезке укладывается восемнадцать двенадцатых долей единичного отрезка, и ему приписывается длина восемнадцать двенадцатых. Если для двух отрезков найдена их общая мера, то для них всегда можно указать и другие общие меры — и при том в бесконечном количестве. Для рассматриваемого случая таковыми будут, скажем, мера, укладывающаяся в избранном отрезке 180 раз, а в единичном 120 раз; а также мера, укладывающаяся в избранном отрезке 9 раз, а в единичном 6 раз; а также мера, укладывающаяся в избранном отрезке 6 раз, а в единичном 4 раза; а также мера, укладывающаяся в избранном отрезке 3 раза, а в единичном 2 раза. Следовательно, нашему избранному отрезку можно приписать и длину сто восемьдесят сто двадцатых, и длину девять шестых, и длину шесть четвёртых, и длину три вторых. Именно поэтому дроби [180]/120[18]/12[9]/6[6]/4 и [3]/2, будучи различными дробями, выражают одно и то же число. Указанные дроби можно трактовать как имена этого числа, то есть как синонимы. Таким образом, длина у отрезка единственна, хотя и именоваться может по-разному.

Числа, выражаемые дробями, называются дробными. Целые и дробные числа объединяются вместе под названием рациональные числа. (Для простоты изложения мы ничего не говорим об отрицательных числах; для наших целей они не нужны, и о них можно просто забыть.) Казалось бы, какие ещё могут быть числа? Но, как мы знаем, диагональ квадрата не имеет общей меры с его стороной. Поэтому если взять квадрат со стороной длины единица, то оказывается, что длина диагонали этого квадрата никаким рациональным числом не выражается. Следовательно, у этой диагонали либо во­все нет длины, либо эта длина выражается числом какого-то нового типа, каковой тип ещё только подлежит введению в рассмотрение. Числа этого нового типа называются иррациональными, вместе с рациональными они образуют системудействительных, или вещественных, чисел. Теперь уже каждый отрезок обретает длину в виде некоторого действительного числа.

Надо иметь в виду, что изложенный взгляд на понятие числа, включающий в объём этого понятия и иррациональные числа, есть взгляд с современной точки зрения. Чтобы прийти к этой точке зрения, потребовались тысячелетия. В древности лишь натуральные числа считались числами. Число понималось как совокупность единиц. Очень постепенно в обиход входили дроби — сперва с числителем единица и небольшим знаменателем, затем числителю уже разрешалось быть ббольшим единицы, но всё-таки непременно меньшим знаменателя, и так далее. Но и дробь не сразу была признана выражающей число, поначалу она трактовалась иначе — как выражающая отношение величин. Открытие явления несоизмеримости привело к осознанию того поразительного факта, что не всякое отношение величин может быть выражено дробью, и, в конечном счёте, к возникновению понятия действительного числа. Возможно, впервые ясное представление о действительных числах сформулировал великий арабский учёный и государственный деятель XIII века Насирэддин Тусби. Рассуждая об однородных величинах (таковыми являются длины, или веса, или объёмы и т. п.) и отношениях величин одного и того же рода, он писал: «Каждое из этих отношений может быть названо числом, которое определяется единицей так же, как один из членов этого отношения определяется другим из этих членов». И наконец, завершающую точку в развитии ясного, хотя всё ещё интуитивного, представления о действительных числах поставил Ньютон в своей «Всеобщей арифметике» (1707): «Под числом мы понимаем не столько множество единиц, сколько отвлечённое отношение какой-нибудь величины к другой величине того же рода, принятой нами за единицу. Число бывает трёх видов: целое, дробное и иррациональное. Целое есть то, что измеряется единицей; дробное есть кратное долей единицы; иррациональное число несоизмеримо с единицей».

Нормы научной строгости со временем ужесточаются. Можно полагать, что формулировки Туси и Ньютона воспринимались современниками как определения понятия действительного числа. В наши дни они воспринимаются как всего лишь полезные комментарии. Заключённая в этих комментариях вербализация свидетельствует, что в XIII — XVIII веках понятие действительного числа уже с достаточной отчётливостью воспринималось именно как понятие. Постепенно, однако, возрастала потребность не только в интуитивном осознании, но и в исчерпывающих определениях. Формулировки Туси и Ньютона потому не являются таковыми, что содержашиеся в них термины «величина» и «отношение» сами нуждаются в разъяснении. Теории действительных чисел, отвечающие сегодняшним требованиям строгости, появились лишь около 1870 года. Первопроходцем здесь был почти забытый ныне французский математик Шарль Мерэ (Charles Mбeray; 1835 — 1911). В ег­о жизни было два события, каждое из которых поставило его на почётнейшее первое место в некоторой значимой сфере. В 1854 году Мерэ оказался касбиком — то есть первым среди принятых по конкурсу в парижскую Высшую нормальную школу (каковую благополучно окончил в 1857 г.); в первоначальном своём значении слово cacique означает индейского племенного вождя в доколумбовой Латинской Америке. В 1869 году Мерэ опубликовал статью, в которой было впервые дано определение действительного числа и впервые изложена математическая теория действительных чисел. Не только первое, но и второе из этих событий остались лишь фактами его биографии. Мерэ имел статус уважаемого, но не ведущего математика своего времени, хотя имел основания числиться именно таковым. Его идеи не были должным образом оценены современниками и никак не повлияли на развитие науки. На развитие науки повлияли появившиеся через несколько лет публикации прославленных, в отличие от Мерэ, немецких математиков Рихарда Дедекинда (1831 — 1916) и Георга Кантора (1845 — 1918), о котором мы ещё поговорим в главе 7. Каждый из них предложил некую конструкцию, посредством которой действительные числа строились на базе чисел рациональных. Хотя нет сомнений, что конструкция Кантора была найдена им независимо, она повторяет конструкцию Мерэ.

У нас здесь нет возможности излагать теории Дедекинда и Мерэ — Кантора. Отметим лишь, что строительным материалом для математического понятия действительного числа служат рациональные числа, каковые, в свою очередь, строятся на основе целых чисел. Это обстоятельство дало возможность выдающемуся немецкому математику Леопольду Кбонекеру (1823 — 1891) произнести в 1886 году знаменитую фразу «Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk» («Бог создал целые числа, всё остальное есть дело рук человеческих»). Возможно, более точным переводом немецкого слова «ganzen» было бы здесь русское слово «натуральные» — потому что не вызывает сомнений, что Кронекер имел в виду не все целые, а именно натуральные числа (из которых уже путём сознательной человеческой деятельности строятся отрицательные целые числа). Согласие с божественным происхождением натуральных чисел ещё не означает торжества креационизма. Потому что ничто не мешает считать, что натуральные числа появились в процессе исторической эволюции, оставляя при этом в стороне вопрос, управляется ли эволюция Господом Богом или происходит сама по себе. Став на эту точку зрения, приходим к выводу, что натуральные числа родились в процессах пересчитывания предметов, а также (и, надо полагать, позже) в процессах определения количества предметов. Это разные процессы, и они, с философской точки зрения, приводят к различным (хотя и соотнесённым друг с другом) системам натуральных чисел. Не знаю, как другие языки, но русский язык демонстрирует это различие достаточно наглядно. Пересчёт мы начинаем обычно со слова «раз», а наименьшее возможное количество чего-нибудь есть ноль. Таким образом, наименьшееколичественное число есть число ноль, а наименьшее считательное число есть число раз (один, единица). Некоторые поэтому начинают натуральный ряд, то есть ряд натуральных чисел, с нуля, другие же — с единицы.

Упоминавшийся уже Дедекинд называл числа свободными творениями человеческого духа (а книга Дедекинда, в которой была провозглашена эта формула, сама имела примечательное название: «Was sind und was sollen die Zahlen» — «Что такое числа и каково их назначение»). Для понимания сущности чисел важно помнить, что число есть понятие абстрактное. Никакое число, даже число, скажем, два, нельзя ни увидеть, ни услышать. Увидеть можно два стола или двух слонов, а услышать можно слово «два» — но это совсем другое дело. Полезно отметить, что абстрактность понятий не есть отличительная (и потому многих пугающая) черта математики. Если вдуматься, то, скажем, такие физические понятия, как электрон, протон и т. п., весьма абстрактны. На память приходит вопрос, заданный на знаменитом семинаре Гельфанда, действовавшем на механико-математическом факультете Московского университета, одним из участников семинара: «Какой реальный математический смысл имеет эта физическая абстракция?»

Вернёмся, однако, к проблемам, не имеющим решения.

 

Глава 5. Квадратура круга

Выражение «квадратура круга» прочно вошло в язык в качестве красивого обозначения всякой не имеющей решения задачи. В таком своём значении это выражение используется в расширенном смысле — как метафора. В узком же, буквальном смысле квадратура круга означает некую пришедшую к нам из античности геометрическую задачу, относящуюся к задачам на построение.

Не одно тысячелетие задача о квадратуре круга оставалась костью в горле математики: не получалось ни её решения, ни доказательства отсутствия такового. Постепенно укреплялось мнение о невозможности решения, и в XVIII веке это мнение превратилось в убеждение настолько твёрдое, что академии наук разных стран заявили о прекращении приёма к рассмотрению трактатов, претендующих на решение. Наконец, в конце XIX века вопрос был закрыт: развитие математики позволило доказать, что решения и в самом деле не существует. Понимание того, в чём состоят задачи на построение, и в частности древняя задача о квадратуре круга, входит, на наш взгляд, в общекультурный минимум. Чтобы дать возможность читателю согласиться или не согласиться с этим тезисом, напомним необходимые сведения.

Геометрия требует чертежа, и античные математики делали такие чертежи. Самым удобным и дешёвым способом было чертить на песке. Архимед, величайший учёный древности (да и не только древности!), был убит рим­ским солдатом в 212 году до н. э., во время Второй пунической войны, на Сицилии, в своих родных Сиракузах. По преданию, солдат застал его на песчаном пляже и, взбешённый его словами «Не трогай мои чертежи!», зарубил мечом. Основными элементами чертежей служили прямые линии и окружности. Для их вычерчивания имелись специальные инструменты. Таких инструментов было два: линейка, позволяющая проводить прямые, и циркуль, позволяющий проводить окружности. Под термином циркуль условимся понимать любое устройство, пригодное для заданной цели. Скорее всего, древнейший циркуль состоял из двух палок, соединенных верёвкой; одна палка («игла») втыкалась в песок в центре намеченной окружности, верёвка натягивалась, и второй палкой («писалом», «чертилом», «стилом») чертилась окружность с радиусом, равным длине верёвки. Задача на построение состояла в том, чтобы построить, то есть начертить, геометрическую фигуру с требуемыми свойствами. Вот простейший пример такой задачи: для заданного отрезка требуется построить его середину. Решение: для каждого из концов отрезка проводим окружность с центром в этом конце и с радиусом, равным длине отрезка; далее проводим прямую через те две точки, в которых наши окружности пересеклись; эта прямая пересечёт заданный отрезок в его середине. А вот формулировка задачи о квадратуре круга: для заданного круга требуется построить квадрат, равновеликий (то есть равный по площади) этому кругу. Неразрешимость квадратуры круга доказал в 1882 году немецкий математик Фердинанд Линдеман. Рассказывают, что он завершил доказательство 12 апреля, в день своего тридцатилетия, и, спрошенный друзьями, отчего это он сияет так, словно решил проблему квадратуры круга, отвечал, что так оно и есть. Жена Линдемана была недовольна, что муж удовлетворен той славой, которую заслуженно принесла ему задача о квадратуре круга, и заставляла его доказывать Великую теорему Ферма. Он страдал, но вынужден был подчиняться. Он скончался в 1939 году и, пока был в силах, занимался Проблемой Ферма. Результатом были слабые публикации на эту тему.

Мы, разумеется, не собираемся здесь доказывать неразрешимость задачи о квадратуре круга. Можно было бы попытаться в доступных терминах наметить общее направление доказательства — но мы и этого делать не будем, потому что это вывело бы нас за пределы того, что мы считаем общекультурным математическим минимумом. А вот самоё формулировку обсудим. Казалось бы, что тут обсуждать, формулировка достаточно ясная. Сейчас мы увидим, что на самом деле её смысл нуждается в разъяснении. Приносим извинения тому читателю, который почтёт эти разъяснения занудными и излишними. Но надеемся встретить и иного читателя, который найдет здесь пищу для размышлений и оценит то обстоятельство, что именно математика является поставщиком такой пищи.

Каждая задача на построение предполагает наличие некоторой исходной геометрической фигуры и состоит в требовании указать способ, позволяющий построить новую фигуру, связанную с исходной указанными в задаче соотношениями. Так, в задаче о середине отрезка исходной фигурой был отрезок, а новой фигурой — точка, являющаяся его серединой; в задаче о квадратуре круга исходная фигура — круг, а новая — квадрат, имеющий ту же площадь. Вот ещё пример: по данной стороне построить правильный треугольник (то есть такой треугольник, у которого одинаковы все стороны и все углы). Исходной фигурой здесь служит отрезок, а новой фигурой — треугольник, у которого все стороны конгруэнтны этому отрезку. Надеемся, что читатель легко решит эту задачу. Можно построить и правильный семнадцатиугольник, но это уже не столь просто. А вот аналогичная задача о построении правильного семиугольника не имеет решения — это в конце XVIII века доказал один из величайших математиков всех времён Карл Фридрих Гаусс (1777 — 1855). До Гаусса существование таких задач на построение, решить которые невозможно, было лишь правдоподобной гипотезой. Он же указал способ построения правильного 17-угольника. Вот ещё пример весьма известной и древней задачи на построение: задача о трисекции угла. В ней требуется для каждого угла построить другой угол, составляющий треть исходного. Для некоторых углов специального вида — например, для прямого угла — построение трети не составляет труда. Однако в середине XIX века про некоторые углы было доказано, что, оперируя линейкой и циркулем, построить их невозможно. Оказалось, в частности, что невозможно построить углы в 10 и 20 градусов и, следовательно, осуществить трисекцию углов в 30 и 60 градусов. Тем самым была установлена неразрешимость задачи о трисекции угла.

Итак, в каждой задаче на построение требуется указать некоторый способ построения. Когда такой способ предъявляется, как это было для задачи о середине отрезка, он, способ, обычно не вызывает сомнений. Но когда утверж­дается, что такого способа нет, как это утверждается для квадратуры круга или для трисекции угла, возникает необходимость уточнить, чего именно нет.

Всякий способ построения состоит в указании некоторой последовательности разрешённых операций. Последовательность эта — своя для каждой задачи. Сам же перечень разрешённых операций один и тот же для всех задач на построение. Он весьма невелик, и мы сейчас с ним познакомимся.

Прежде всего, это операции, связанные с линейкой. Читателя может удивить множественное число. Что ещё можно делать с линейкой, как не чертить прямую? А вот что: чертить луч, то есть полупрямую; чертить отрезок. Более точно: разрешается, приложив линейку к двум уже построенным точкам, начертить отрезок между этими точками; или луч, начинающийся в одной из этих точек и проходящий через другую; или прямую, проходящую через эти две точки. Господи! — воскликнет читатель, да это же и так ясно, стоило ли тратить слова на такую очевидность. Я благодарен читателю за это восклицание, потому что оно даёт возможность объяснить, почему стоило. Для этого рассмотрим ещё одну операцию, не менее простую для исполнения, чем проведение прямой через две точки, но, однако же, не входящую в перечень разрешённых: через данную точку провести касательную к данной окружности. Начертив окружность и взяв точку вне круга, читатель убедится, как легко провести касательную, используя реальную, деревянную или металлическую, линейку. Тем не менее в перечень разрешённых операций проведение касательной не включено. Мы только что прибегли к важному, как нам кажется, приёму обучения понятиям: надо не только приводить примеры вещей, входящих в объём вводимого понятия, но и контрпримеры вещей, в указанный объём не входящих. Так, чтобы на примерах объяснить, что такое чётное число, надо не только сказать, что числа 0, 2, 4, 6 и так далее являются чётными, но и сказать, что числа 1, 3, 5, 7 и так далее таковыми не являются; чтобы объяснить марсианину, что такое кошка, надо предъявить ему не только несколько кошек, но также и несколько собак, сказав, что они кошками не являются.

С циркулем связана такая операция. Установив иглу циркуля в уже построенную точку, а стило в другую уже построенную точку, разрешается начертить окружность. И даже более общо: установив иглу и стило в две уже построенные точки, разрешается, не меняя раствора циркуля, перенести иглу в третью уже построенную точку и начертить окружность.

Разрешается находить пересечения друг с другом уже построенных прямых, лучей, отрезков, окружностей и дуг окружностей (но не всяких дуг, а расположенных между двумя уже построенными точками).

Наконец, разрешается совершать так называемый выбор произвольной точки. Это значит, что разрешается нанести стилом точку в любом месте плоскости, а также в любом месте уже построенной фигуры и использовать эту точку в дальнейших построениях. (Термин «фигура» обозначает здесь отрезок, луч, прямую, окружность, дугу окружности, а также участок плоскости, граница которой составлена из перечисленных только что простейших фигур.)

Только теперь, после описания всех разрешённых операций, обретает точный смысл утверждение о нерешимости той или иной задачи на построение, в частности задачи о квадратуре круга. Отсутствие решения означает здесь отсутствие такой цепочки разрешённых операций, которая приводила бы от круга к квадрату той же площади.

Заметим, что сам перечень разрешённых операций в значительной степени обусловлен историческими причинами и, вообще говоря, мог бы быть другим. Например, можно было бы включить в число разрешённых операций операцию построения касательной, о которой говорилось выше (заметим, кстати, что это не дало бы ничего принципиально нового, потому что касательную можно построить, подобрав подходящую цепочку разрешённых операций из старого перечня). Можно было бы включить в число разрешённых операций вычерчивание эллипса — ведь устройство для вычерчивания эллипса лишь немногим сложнее циркуля (достаточно вбить два гвоздя в фокусы эллипса и протянуть между ними нить, более длинную, нежели расстояние между фокусами; зацепим нить стилом и натянем; тогда, перемещая стило так, чтобы нить оставалась натянутой, получим эллипс). Да даже и не надо заботиться о лёгкости выполнения разрешённой операции: строго говоря, мы вправе объявить разрешённой любую операцию по нашему усмотрению. Перечень разрешённых операций, с чисто логической точки зрения, достаточно произволен. Однако, коль скоро он выбран, он уже не меняется. Полезная аналогия: свод юридических актов. С чисто логической, опять же, точки зрения, законы произвольно устанавливаются законодателем, но, будучи принятыми, они уже — хотя бы на определённый период — не меняются; во всяком случае, так должно быть.

Объясним теперь, почему задачам на построение было уделено здесь такое внимание. Причина в том, что на примере этих задач мы пытались продемонстрировать некоторые математические представления принципиального характера, представления, которые можно отнести к философии математики, а то и к философии вообще. Перечислим эти представления.

Во-первых, был ещё раз проиллюстрирован тезис, что задача, или проблема, всегда есть требование что-то найти, указать, построить.

Во-вторых, была показана необходимость уточнения того, в пределах какого класса объектов ищется решение задачи. Иногда этот класс состоит из объектов довольно простой (честнее было бы сказать: довольно привычной) природы — троек чисел в проблеме Ферма, отрезков в проблеме соизмери­мости, но иногда он состоит из довольно-таки специальных объектов, подобно цепочкам операций в задачах на построение.

В-третьих, уточнение, о котором только что шла речь, особенно необходимо в случае, если задача оказывается нерешимой.

В-четвёртых, представление о разрешённой операции, в его общем виде, шире сферы задач на построение. Оно существенно и для компьютерной науки (Computer Science), и для компьютерной практики, а именно для программирования. Каждый компьютер имеет свой набор разрешённых операций, а каждая компьютерная программа есть некоторая цепочка операций, выбранных из этого набора.

Именно в силу своего философского аспекта задачи на построение должны занимать достойное место в школьном курсе геометрии. Мы не имеем в виду сложных задач, требующих зачастую большой изобретательности, — такие задачи должны изучаться в специализированных математических классах. Нет, мы имеем в виду самые простые задачи вроде задачи о построении правильного треугольника или задачи о нахождении середины отрезка.

 

Глава 6. Массовые задачи и алгоритмы

В который уже раз подчеркнем, что задача — это всегда требование что-то найти, построить, указать. В школе это «что-то» обычно называют ответом, а систему рассуждений, приводящую к ответу, — решением. Во «взрослой» математике ответ чаще всего тоже называют решением. Таким образом, термин «решение» приобретает два значения: ‘решение-ответ’ и ‘решение-процесс’ — причём первое есть результат второго. С точки зрения русской лексики ситуация здесь отнюдь не уникальна: например, печенье как изделие есть результат печения как действия по глаголу «печь». К путанице подобная полисемия, как правило, не приводит: из контекста всегда бывает ясно, что имеется в виду. Так что согласимся употреблять «взрослую» терминологию.

В замечательной одноактной пьесе «Урок» Эжена Ионеско есть такой диалог, который мы приведём с купюрами.

«Учитель. <...> Сколько будет, ну, скажем, если три миллиарда семьсот пятьдесят пять миллионов девятьсот девяносто восемь тысяч двести пятьдесят один умножить на пять миллиардов сто шестьдесят два миллиона триста три тысячи пятьсот восемь?

Ученица. Это будет девятнадцать квинтиллионов триста девяносто квадриллионов два триллиона восемьсот сорок четыре миллиарда двести
девятнадцать миллионов сто шестьдесят четыре тысячи пятьсот восемь

<...>

Учитель (сосчитав в уме, с нарастающим изумлением). Да... Вы правы... ответ, действительно... (невнятно бормочет) квадриллионов... триллионов... миллиардов... миллионов... (разборчиво) сто шестьдесят четыре тысячи пятьсот восемь... (Ошеломленно.) Но каким образом вы это вычислили, если вам недоступны простейшие приемы арифметического мышления?

Ученица. Очень просто. Поскольку я не могу положиться на свое арифметическое мышление, я взяла и выучила наизусть все результаты умно­жения, какие только возможны».

Всех результатов умножения бесконечно много, так что выучить их наизусть невозможно. Да и не нужно: Ионеско справедливо утверждает, что «математика — заклятый враг зубрёжки». (Кстати, теоретическая невозможность выучить все результаты получила в приведённом диалоге и экспериментальное подтверждение. Дело в том, что Ученица дала неправильный ответ: правильным ответом является число 19 389 602 947 179 164 508, а ею названо число 19 390 002 844 219 164 508. Не берусь судить, получил ли этот факт должное отражение в ионесковедении.)

Но мы ведь умеем умножать. Это потому, что ещё в начальной школе нам сообщают некоторый общий способ умножения любых целых чисел, а именно способ умножения столбиком. Любой человек, овладевший этим способом, имеет право заявить, что теперь он готов умножить друг на друга любые два натуральных числа — и не потому, что он выучил все результаты (что, повторим, невозможно), а именно потому, что указанный способ позволяет найти требуемый результат для любой пары сомножителей.

На примере с умножением можно получить представление о понятии массовая задача. Массовая задача образуется путём совместного рассмотрения серии однотипных единичных задач. В случае умножения каждая единичная задача состоит в указании пары конкретных чисел (как, например, тех, которые были названы Ученице Учителем) и требовании найти их произведение. Это произведение является решением предложенной единичной задачи. Массовая же задача состоит здесь в требовании найти некий метод, позволяюший найти произведение для каждой отдельной пары чисел. Другой простой пример. Задача решить квадратное уравнение x- 13x+ 30 = 0 — это единичная задача, и её решением служит пара чисел 3 и 10. А вот изучаемая в средней школе задача о решении произвольного квадратного уравнения — это массовая задача, и её решением служит всем известная (или долженствующая быть всем известной) формула, дающая решение для любого конкретного квадратного уравнения. Остановим свой взгляд на какой-нибудь массовой задаче и посмотрим, чем отличаются друг от друга составляющие её единичные задачи. Мы видим, что они отличаются своими исходными данными. Для каждой единичной задачи умножения исходным данным служит конкретная пара чисел. А для каждой единичной задачи на решение квадратного уравнения исходное данное — это конкретное квадратное уравнение.

Решением же массовой задачи является общий метод, дающий для каждой из составляющих её единичных задач решение этой задачи. Если предложенный общий метод состоит в последовательности строго детерминированных операций, ведущих от исходного данного к результату, он называется конструктивным, или эффективным,или алгоритмическим, или, короче, алгоритмом. Таким образом, можно говорить об алгоритме сложения столбиком, об алгоритме умножения столбиком, об алгоритме решения квадратных уравнений и т. п. Алгоритмы играют в математике, да и во всей нашей жизни, большую роль — особенно в связи с развитием компьютерной технологии.

Само слово «алгоритм» достаточно интересно: это, возможно, единственный математический термин, имеющий в своей этимологии географическое название. Таким названием служит слово «Хорезм». Великий учёный Мухаммед бен Муса аль-Хорезмби жил в конце VIII — первой половине IX века. Арабское имя «аль-Хорезми» буквально означает ‘из Хорезма’. Аль-Хорезми предложил некоторые методы решения арифметических задач, и на его авторитет ссылались средневековые европейские авторы, писавшие, как это было принято, на латыни. При этом начиная с XII века его имя транслитерировалось как «Algoritmi». Отсюда и пошёл термин «алгоритм». Поиски общего метода для решения массовой задачи велись со времён античности. Однако впервые ясное понимание алгоритма в качестве самостоятельной сущности встречается лишь в 1912 году в трудах великого французского математика Эмиля Бореля.

Понятие алгоритма — одно из центральных в математике. Программа для компьютера есть не что иное, как запись какого-то алгоритма на компьютерном языке. Прорыв в осознании этого важнейшего понятия произошёл в 1936 году, когда независимо друг от друга Алонзо Чёрч в Америке и Алан Тьюринг в Англии предложили математические уточнения понятия алгоритма (каждый своё) и на основе этих уточнений предъявили первые примеры массовых проблем, неразрешимых алгоритмически, в числе которых оказалась и очень знаменитая, стоявшая с 1915 года так называемая «das Entscheidungsproblem» («проблема разрешения»), считавшаяся главной проблемой математической логики. Поясним, что термины «проблема» и «задача» для нас синонимы и что массовая проблема считается алгоритмически неразрешимой, если не существует решающего её алгоритма, то есть такого единого алгоритма, который позволял бы находить решение для каждой из тех единичных проблем, которые и составляют рассматриваемую массовую проблему.

Алгоритмически неразрешимые проблемы, указанные Чёрчем и Тьюрингом, слишком сложны, чтобы их здесь формулировать. Сейчас мы приведём достаточно простой пример такой проблемы. Разумеется, мы вынуждены огра­ничиться её формулировкой и не приводить ни доказательства, ни даже намёка на доказательство её неразрешимости. Пример этот покажет, что массовые проблемы, для которых отсутствует требуемый алгоритм, лежат совсем близко к нашей повседневной жизни.

В целях большей наглядности изложим наш пример в терминах некоей игры. Любезный читатель согласится, что такая игра вполне мыслима в нашу эпоху пиара, рекламных акций, казино и игровых автоматов.

Средствами игры будут служить пластинки, наподобие тех доминошек, что используются при игре в домино. Как и в домино, каждая пластинка разделена на верхнюю и нижнюю половину. В каждой половине что-то написано. Отличие от домино в том, чтбо именно написано. В случае домино в каждой из половин записывается количество очков, от 0 до 6. А нашем случае в каждой из половин записывается какая-то цепочка из букв икс и зет. Вот примеры таких цепочек. Цепочки длины один: xz. Цепочки длины два: xxxzzxzz. Цепочки длины три: xxx, xxz, xzx, xzz, zxx, zxz, zzx, zzz. Возможна и цепочка длины ноль, в этом случае не записано ничего. А вот одна из 128 цепочек длины семь: zxzxxxz. Проиллюстрируем сказанное примерами возможных пластинок:

Перечисленные 4 пластинки, в том порядке, как они указаны, обозначим — для дальнейших ссылок — буквами A, B, C, D. Если приложить одну пластинку к другой, но не торцами, как при игре в домино, а боками, то в результате получим две строчки букв: одну сверху, другую снизу. Так, прикладывая к D (слева D, справа A), получаем zzzxсверху и zzx снизу. Если приложить в другом порядке, получим xzzz сверху, zxz снизу. Аналогично можно прикладывать друг к другу несколько пластинок и считывать верхнюю и нижнюю строчки букв. Более того. Каждую пластинку разрешается воспроизводить в неограниченном количестве и создавать сочетания из повторяющихся пластинок — такие, например, как AACA. В этом примере верхней строчкой будет xxxzx, а нижней — zxzxzzzx. Прошу у читателя прощение за затянувшееся предварение к игре, но хотелось бы, чтобы всё было предельно ясно.

Теперь — сама игра. Она состоит в следующем. В средствах массовой информации объявляется некоторый конкретный набор пластинок. Далее предлагается, воспроизводя каждую из пластинок набора в необходимом количестве, приложить пластинки друг к другу так, чтобы верхняя и нижняя строчки иксов и зетов совпали друг с другом. Первым пяти, приславшим решения, будет выплачен внушительный приз.

Поясним сказанное на примерах. Пусть объявленный набор содержит всего только одну пластинку A из приведённого выше перечня. Ясно, что решение невозможно, поскольку, сколько раз ни прикладывай пластинку A саму к себе, нижняя строка всегда окажется длиннее верхней. По сходной причине решения не существует, если объявленный набор состоит из одной только пластинки D, только тут длиннее будет верхняя строка. Желающие могут попытаться доказать, что решения не существует и в том случае, когда объявленный набор состоит из двух пластинок, A и D. А вот если объявить набор из всех наших четырёх пластинок ADC и D, то решение существует. Действительно, если сложить пластинки в таком порядке: DBCDA, то и верх­няя, и нижняя строка окажутся одинаковы: zzzxxzzzzx.

Итак, набор объявлен. Все хотят получить приз. Но прежде, чем пытаться найти такое расположение пластинок, при котором верхняя и нижняя строки окажутся одинаковыми, желательно узнать, возможно ли такое расположение в принципе. Ведь если оно невозможно, то бесперспективно его искать, это будет пустой потерей времени. Так вот, оказывается, что не существует никакого эффективного способа это узнавать. Не существует (именно не существует, а не просто неизвестен) такого алгоритма, который позволял бы для любого объявленного набора пластинок узнать, имеется ли реше­ние, то есть возможно или невозможно сложить пластинки требуемым образом. Для каждого отдельно взятого набора пластинок задача узнать, к какой из двух категорий этот набор относится — к той, для которой решения имеются, или же к той, для которой решений нет, — она, эта задача, есть сугубо творческая задача, своя для каждого такого набора, а общий метод получения ответа для всех таких задач отсутствует.

 

(Окончание следует.)





Вход в личный кабинет

Забыли пароль? | Регистрация